
Hash Functions - Bart Preneel June 2014

1

Insert presenter logo
here on slide master

Bart Preneel
KU Leuven - COSIC

firstname.lastname@esat.kuleuven.be

Sibenik, June 2014

Introduction to the
Design and Cryptanalysis of

Cryptographic Hash Functions

2

Hash functions

X.509 Annex D

MDC-2

MD2, MD4, MD5

SHA-1

This is an input to a crypto-
graphic hash function. The input
is a very long string, that is
reduced by the hash function to a
string of fixed length. There are
additional security conditions: it
should be very hard to find an
input hashing to a given value (a
preimage) or to find two colliding
inputs (a collision).

1A3FD4128A198FB3CA345932h

RIPEMD-160

SHA-256

SHA-512

SHA-3

33

Applications

• short unique identifier to a string
– digital signatures
– data authentication

• one-way function of a string
– protection of passwords
– micro-payments

• confirmation of knowledge/commitment

2005: 800 uses of MD5 in Microsoft Windows

• pseudo-random string generation/key derivation

• entropy extraction

• construction of MAC algorithms, stream ciphers, block
ciphers,…

4

Agenda

• Definitions

• Iterations (modes)

• Compression functions

• Constructions

• SHA-3

• Conclusions

5

Security requirements (n-bit result)

h

?

h(x)

h

x

h(x)

h

?

h(x’)

h

?

h

?

=



=

preimage 2nd preimage collision

2n 2n 2n/2



h(x’)h(x)

6

Preimage resistance

h

?

h(x)

preimage

2n

• in a password file, one does not store
– (username, password)

• but
– (username,hash(password))

• this is sufficient to verify a password

• an attacker with access to the
password file has to find a preimage

Hash Functions - Bart Preneel June 2014

2

7

Second preimage resistance

h

x

h(x)

h

?

h(x’)=

2nd preimage

2n



• an attacker can modify x but not h(x)

• he can only fool the recipient if he
finds a second preimage of x

h(x)

Channel 2: low capacity but secure
(= authenticated – cannot be modified)

x

Channel 1: high capacity and insecure

8

Collision resistance

hh

x

=


collision

2n/2

h(x’)h(x)

• hacker Alice prepares two versions
of a software driver for the O/S
company Bob
– x is correct code

– x’ contains a backdoor that gives Alice
access to the machine

• Alice submits x for inspection to Bob

x’

• if Bob is satisfied, he digitally signs
h(x) with his private key

• Alice now distributes x’ to users of
the O/S; these users verify the
signature with Bob’s public key

• this signature works for x and for x’,
since h(x) = h(x’)

9

Pseudo-random function

computationally indistinguishable from a random function

Advh
prf = Pr [K  K: AhK(.) 1] - Pr [f  RAND(m,n): Af 1]

RAND(m,n): set of all functions from m-bit to n-bit strings

h

$ $

K

D
This concept makes only

sense for a function with a
secret key

? or ?

f

10

variant of indistinguishability appropriate when distinguisher
has access to inner component (e.g. building block of a
hash function)

 Simulator S,  distinguisher D, AdvPRO(H,S) is small

H
(hash function)

FIL
RO VIL RO S

D
? or ?

Indifferentiability from a random oracle
or PRO property [Maurer+04]

[Ristenpart-Shacham-Shrimpton’11]

[Demay-Gaz-Hirt-Maurer’13]

11

Brute force (2nd) preimage

• multiple target second preimage (1 out of many):
– if one can attack 2t simultaneous targets, the effort to find a single

preimage is 2n-t

• multiple target second preimage (many out of
many):
– time-memory trade-off with Θ(2n) precomputation and

storage Θ(22n/3) time per (2nd) preimage: Θ(22n/3)
[Hellman’80]

• answer: randomize hash function with a parameter S
(salt, key, spice,…)

12

Brute force attacks in practice

• (2nd) preimage search
– n = 128: 14 B$ for 1 year if one can attack 240 targets in

parallel

• parallel collision search: small memory using
cycle finding algorithms (distinguished points)
– n = 128: 1 M$ for 5 hours (or 1 year on 60K PCs)

– n = 160: 56 M$ for 1 year

– need 256-bit result for long term security (30 years or more)

Hash Functions - Bart Preneel June 2014

3

1313

Quantum computers

• in principle exponential parallelism

• inverting a one-way function: 2n reduced to 2n/2

[Grover’96]

• collision search: can we do better than 2n/2 ?
– 2n/3 computation + hardware [Brassard-Hoyer-Tapp’98] = 22n/3

– [Bernstein’09] classical collision search requires 2n/4 computation
and hardware (= standard cost of 2n/2)

14

Properties in practice

• collision resistance is not always necessary

• other properties are needed:
– PRF: pseudo-randomness if keyed (with secret key)
– PRO: pseudo-random oracle property
– near-collision resistance
– partial preimage resistance (most of input known)
– multiplication freeness

• how to formalize these requirements and the
relation between them?

1515

Iteration
(mode of compression function)

15 16

How not to construct a hash function

• Divide the message into t blocks xi of n bits each

Message block 1: x1


Message block 2: x2



Message block t: xt

=



Hash value h(x)

…

17

Hash function: iterated structure

• split messages into blocks of fixed length and hash them
block by block with a compression function f

• need padding at the end

efficient and elegant…. but …

f

x1

IV
f

x2

H1

f

x3

H2

f

x4

H3
g

18

Security relation between f and h

• iterating f can degrade its security
– trivial example: 2nd preimage

f

x1

IV
f

x2

H1

f

x3

H2

f

x4

H3
g

f

x2

IV = H1

f

x3

H2

f

x4

H3
g

Hash Functions - Bart Preneel June 2014

4

1919

Security relation between f and h (2)

• solution: Merkle-Damgård (MD) strengthening
– fix IV, use unambiguous padding and insert length at the end

• f is collision resistant  h is collision resistant
[Merkle’89-Damgård’89]

• f is ideally 2nd preimage resistant  h is ideally 2nd

preimage resistant [Lai-Massey’92]

• PRO preservation  Col, Sec and Pre for ideal
compression function
– but for narrow pipe bounds for Sec and Pre are at most 2n/2 rather than 2n

• many other results

?

20

Security relation between f and h (3)

length extension: if one knows h(x), easy to compute h(x || y) without knowing x or IV

f

x1

IV
f

x2

H1

f

x3

H2

f

x4

H3

g

solution: output transformation

f

x1

IV
f

x2

H1

f

x3

H2 H3= h(x)

f

x1

IV
f

x2

H1

f

x3

H2

f

y

H3 H4= h(x || y)

2121

Attacks on MD-type iterations

• long message 2nd preimage attack
[Dean-Felten-Hu'99], [Kelsey-Schneier’05]

– Sec security degrades lineary with number 2t of message blocks
hashed: 2n-t+1 + t 2n/2+1

– appending the length does not help here!

• multi-collision attack and impact on concatenation [Joux’04]

• herding attack [Kelsey-Kohno’06]

– reduces security of commitment using a hash function from 2n

– on-line 2n-t + precomputation 2.2(n+t)/2 + storage 2t

22

How (NOT) to strengthen a hash function?
[Coppersmith’85][Joux’04]

• answer: concatenation

• h1 (n1-bit result) and h2 (n2-bit result)

h2h1

g(x) = h1(x) || h2(x)

• intuition: the strength of g against
collision/(2nd) preimage attacks is the
product of the strength of h1 and h2

— if both are “independent”

• but….

23

Multiple collisions  multi-collision

Assume “ideal” hash function h with n-bit result
• Θ(2n/2) evaluations of h (or steps): 1 collision

– h(x)=h(x’)

• Θ(r. 2n/2) steps: r2 collisions
– h(x1)=h(x1’) ; h(x2)=h(x2’) ; … ; h(xr2)=h(xr2’)

• Θ(22n/3) steps: a 3-collision
– h(x)= h(x’)=h(x’’)

• Θ(2n(t-1)/t) steps: a t-fold collision (multi-collision)
– h(x1)= h(x2)= … =h(xt)

24

Multi-collisions on iterated hash function (2)

• now h(x1||x2||x3||x4) = h(x’1||x2||x3||x4) = h(x’1||x’2||x3||x4) = …
= h(x’1||x’2||x’3||x’4) a 16-fold collision (time: 4 collisions)

f

x1, x’1

IV H1

f

x2, x’2

H2

f

x4, x’4x3, x’3

H3

f

• for IV: collision for block 1: x1, x’1

• for H1: collision for block 2: x2, x’2

• for H2: collision for block 3: x3, x’3

• for H3: collision for block 4: x4, x’4

Hash Functions - Bart Preneel June 2014

5

2525

Multi-collisions [Coppersmith’85][Joux ’04]

• finding multi-collisions for an iterated hash function is not
much harder than finding a single collision (if the size of the
internal memory is n bits)

h2h1

g(x) = h1(x) || h2(x)

R• algorithm
• generate R = 2n1/2-fold

multi-collision for h2

• in R: search by brute
force for h1

• Time: n1. 2n2/2 + 2n1/2

<< 2(n1 + n2)/2

26

Multi-collisions [Coppersmith’85][Joux ’04]

consider h1 (n1-bit result) and h2 (n2-bit result), with n1  n2.

concatenation of 2 iterated hash functions (g(x)= h1(x) || h2(x))
is as most as strong as the strongest of the two (even if both
are independent)

• cost of collision attack against g at most
n1 . 2n2/2 + 2n1/2 << 2(n1 + n2)/2

• cost of (2nd) preimage attack against g at most
n1 . 2n2/2 + 2n1 + 2n2 << 2n1 + n2

• if either of the functions is weak, the attacks may work better

27

Improving MD iteration

salt + output transformation + counter + wide pipe

f

x1

IV
f

x2

H1

f

x3

H2

f

x4

H3 g

1

salt salt salt salt salt

|x|

security reductions well understood
many more results on property preservation
impact of theory limited

2 3 4

2n2n 2n 2n 2n n

28

Improving MD iteration

• degradation with use: salting (family of functions,
randomization)
– or should a salt be part of the input?

• PRO: strong output transformation g
– also solves length extension

• long message 2nd preimage: preclude fix points
– counter f fi [Biham-Dunkelman’07]

• multi-collisions, herding: avoid breakdown at 2n/2

with larger internal memory: known as wide pipe
– e.g., extended MD4, RIPEMD, [Lucks’05]

29

Tree structure: parallelism

[Damgård’89], [Pal-Sarkar’03], [Keccak team’13]

f

x1

f

f f

x2 x3 x4 x5

f

f f

x6 x7 x8

30

Permutation (π) based: sponge

x1

π

H10

H20

x2

π

x3

π

x4

π π

h1

π

h2

absorb squeeze

…

if result has n bits, H1 has r bits (rate), H2 has c bits (capacity) and
the permutation π is “ideal” collisions min (2c/2 , 2n/2)

2nd preimage min (2c/2 , 2n)
preimage min (2c , 2n)

r

c

Hash Functions - Bart Preneel June 2014

6

31

Modes: summary

• growing theory to reduce security properties of
hash function to that of compression function
(MD) or permutation (sponge)
– preservation of large range of properties

– relation between properties

• it is very nice to assume multiple properties of the
compression function f, but unfortunately it is very
hard to verify these

• still no single comprehensive theory

3232

Compression functions

32

33

Single block length: [Rabin’78]

• Merkle’s meet-in-the-middle: (2nd) preimage in time 2n/2

– select 2n/2 values for (x1,x2) and compute forward H’2

– select 2n/2 values for (x3,x4) and compute backward H’’2

– by the birthday paradox expect a match and thus a (2nd) preimage

H1E

x1

H2E

x2

H3E

x3

H4E

x4

IV

H’2 H’’2

34

Block cipher (EK) based: single block length

Davies-Meyer

xi

EHi-1

Hi

Miyaguchi-Preneel

xi E

Hi-1

Hi

• output length = block length m; rate 1; 1 key schedule per encryption
• 12 secure compression functions (in ideal cipher model)

• lower bounds: collision 2m/2, (2nd) preimage 2m

• [Preneel+’93], [Black-Rogaway-Shrimpton’02], [Duo-Li’06], [Stam’09],…

3535

Permutation (π) based

small permutation

JH

xi

π
H1i-1 H1i

H2iH2i-1

Hi

Grøstl

xi

π2
Hi-1

π1

parazoa

3636

Block cipher (EK) based: double block length
(3n to 2n compression)

preimage

collision

n

2n/3

5n/8

n/2

n 3n/2 2n5n/4

[Jetchev-Özen-Stam12]

(2)

[Mennink12]

(3)

MDC-2

(2)

MDC-4

(4)

Open problems:

• what is the best
collision/preimage security for
2 block cipher calls?

• For optimal collision security:
what is the best preimage
security for s block cipher
calls? (upper bounds are
known)

3n/5

trivial

(1)

Hash Functions - Bart Preneel June 2014

7

37

Iteration modes and compression functions

• security of simple modes well understood

• powerful tools available

• analysis of slightly more complex schemes very
difficult

• MD versus sponge debate:
– sponge is simpler
– should xi and Hi-1 be treated differently?

3838

Hash function
constructions

38

3939

Hash function history 101

1980

1990

2000

2010

H
A

R
D

W
A

R
E

S
O

F
T

W
A

R
E

DES

AES

single
block
length

double
block
length

small
permu-
tations

RSA

ad hoc
schemes

security
reduction
for
factoring,
DLOG,
lattices

MD2
MD4
MD5

SHA-1

RIPEMD-160

SHA-2

Whirlpool

SHA-3

SNEFRU

Dedicated

40

MDx-type hash function history

MD5

SHA(-0)

SHA-1

SHA-2

SHA-3

HAVAL

Ext. MD4

RIPEMD

RIPEMD-160

MD4 90

91

92

93

94
95

02

12

41

MD5 [Rivest’91]: 4 rounds of 16 steps

A0 B0 C0 D0

A1 B1 C1 D1

A16 B16 C16 D16

x0

x15

A17 B17 C17 D17

A32 B32 C32 D32xp(15)

xp(0)

A33 B33 C33 D33

A48 B48 C48 D48xq(15)

xq(0)

A49 B49 C49 D49

A64 B64 C64 D64xr(15)

xr(0)

…

…

…

…
f

f

g

g

h

h

j

j

+

H i-1

H i

xi

K
i

42

State updates in the MD4 family

SHA/SHA-1 SHA-256 MD4

f

+K

W

+

+

<< s

+

+

+

+

C
H

K

W

Σ1

DN EN FN GN HNAN BN CN

+

M
A
J

Σ0

+

+

Design principles copied in MD5, RIPEMD, HAVAL, SHA,
SHA-1, SHA-256, ...
– All hash functions in use today

Slide credit: C. Rechberger

Hash Functions - Bart Preneel June 2014

8

43

The complexity of collision attacks

0
10
20
30
40
50
60
70
80
90

19
92

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

MD4

MD5

SHA-0

SHA-1

Brute force

brute force: 1 million PCs (1 year) or US$ 100,000 hardware (4 days)

4444

[Wang+’04]

[Wang+’05]
[Mendel+’08]

[McDonald+’09]

[Manuel+’09]

Most attacks
unpublished/withdrawn

[Sugita+’06]

log2 complexity

[Stevens’12]

SHA-1 designed by NIST (NSA) in ‘94

prediction: collision for SHA-1 in the next 12 months

4545

Rogue CA attack
[Sotirov-Stevens-Appelbaum-Lenstra-Molnar-Osvik-de Weger ’08]

Self-signed
root key

CA1

User1 User2 User x

CA2 Rogue CA

• request user cert; by special
collision this results in a fake CA
cert (need to predict serial
number + validity period)

•6 CAs have issued certificates signed with MD5 in 2008:
— Rapid SSL, Free SSL (free trial certificates offered by RapidSSL), TC TrustCenter

AG, RSA Data Security, Verisign.co.jp

impact: rogue CA
that can issue certs
that are trusted by
all browsers

4646

Upgrades

• RIPEMD-160 is good replacement for SHA-1

• upgrading algorithms is always hard

• TLS uses MD5 || SHA-1 to protect algorithm
negotiation (up to v1.1)

• upgrading negotiation algorithm is even
harder: need to upgrade TLS 1.1 to TLS 1.2

4747

SHA-2 [FIPS180,NIST‘02]

• SHA-224, SHA-256, SHA-384, SHA-512
– non-linear message expansion
– 64/80 steps
– SHA-384 and SHA-512: 64-bit architectures

• SHA-256 collisions: 31/64 steps 265.5 [Mendel+’13]
– free start collision: 52/64 steps (212x) [Li+12]
– non-randomness 47/64 steps (practical) [Biryukov+11][Mendel+11]

• SHA-256 preimages: 45/64 steps (225x) [Khovratovitch’12]

• implementations today faster than anticipated

• adoption accelerated by other attacks on TLS
– since 2013 deployment in TLS 1.2

4848

SHA-3
(bits and bytes)

48

Hash Functions - Bart Preneel June 2014

9

49

NIST AHS competition (SHA-3)

• SHA-3: 224, 256, 384, and 512-bit message digests

• (similar to SHA-2)

64
51

14
5 1

0

20

40

60

80

Q4/08 Q3/09 Q4/10

round 1 round 2 final

Call: 02/11/07

Deadline (64): 31/10/08

Round 1 (51): 09/12/08

Round 2 (14): 24/7/09

Final (5): 10/12/10

Selection: 02/10/12

Q4/12

50

The candidates

Slide credit: Christophe De Cannière

51

Preliminary cryptanalysis

Slide credit: Christophe De Cannière

52

End of Round 1 candidates

a

Slide credit: Christophe De Cannière

53

Round 2 candidates

a

Slide credit: Christophe De Cannière

5454

Properties: bits and bytes
[Watanabe’10]

Hash Functions - Bart Preneel June 2014

10

55

Reductions: 256-bit result

pre sec coll. indiff. assumption

Blake-256 256 256 128 128 E ideal
Grøstl-256 256 256-L 128 128 π,ρ ideal

JH-256 256 256 128 256 π ideal

Keccak-256 256 256 128 256 π ideal

Skein-256 256 256 128 256 E ideal

SHAKE-128 128 128 128 128 π ideal

NIST 256 256-L 128 -

56

Reductions: 512-bit result

pre sec coll. indiff. assumption

Blake-512 512 512 256 256 E ideal
Grøstl-512 512 512-L 256 256 π,ρ ideal

JH-512 256 256 256 256 π ideal

Keccak-512 512 512 256 512 π ideal

Skein-512 512 512 256 256 E ideal

SHAKE-512 256 256 256 256 π ideal

NIST 512 512-L 256 -

57

Software performance
eBash [Bernstein-Lange]

logarithmic scale

slower

factor 4 in cycles/byte
5858

Hardware: post-place & route results
ASIC 130nm [Guo-Huang-Nazhandali-Schaumont’10]

0

4

8

12

16

20

0 40,000 80,000 120,000 160,000 200,000

SHA256

Blake

BMW

CubeHash

ECHO

Fugue

Grostl

Hamsi

JH

Keccak

Luffa

Shabal

SHAvite

SIMD

Skein

Area
(GateEqv)

Throughput
(Gbps)

Slide credit: Patrick Schaumont, Virginia Tech

Keccak

Grøstl

JH

Skein

Blake

59

Keccak

permutation: 25, 50, 100, 200, 400, 800, 1600

nominal version:

• 5x5 array of 64 bits

• 18 rounds of 5 steps

60

Keccak: FIPS 202 (draft: 28 May 2014)

• append 2 extra bits for domain separation to allow
– flexible output length (XOFs or eXtendable Output Functions)

– tree structure (Sakura) allowed by additional encoding

• 6 versions
– SHA3-224: n=224; c = 448; r = 1152 (72%)
– SHA3-256: n=256; c = 512; r = 1088 (68%)
– SHA3-384: n=384; c = 768; r = 832 (52%)
– SHA3-512: n=512; c = 1024; r = 576 (36%)
– SHAKE128: n=x; c = 256; r = 1344 (84%)
– SHAKE256: n=x; c = 512; r = 1088 (68%)

pad 01

pad 11 for XOF

if result has n bits, H1 has r bits (rate), H2 has c bits (capacity) and
the permutation π is “ideal” collisions min (2c/2 , 2n/2)

2nd preimage min (2c/2 , 2n)
preimage min (2c , 2n)

Hash Functions - Bart Preneel June 2014

11

61

Performance of hash functions [Bernstein-Lange]
(cycles/byte) Intel Core 2 Quad Q9550; 4 x 2833MHz (2008)

(estimated)

2001

62

Hash functions: conclusions

• SHA-1 would have needed 128-160 steps
instead of 80

• 2004-2009 attacks: cryptographic meltdown but
not dramatic for most applications

• theory is developing for more robust iteration
modes and extra features; still early for building
blocks

• Nirwana: efficient hash functions with security
reduction

