

Applications

- short unique identifier to a string
- digital signatures
data authentication
- one-way function of a string
- protection of passwords
micro-payments
- confirmation of knowledge/commitment
- pseudo-random string generation/key derivation
- entropy extraction
- construction of MAC algorithms, stream ciphers, block ciphers,...
(合)
2005: 800 uses of MD5 in Microsoft Windows

Agenda

- Definitions
- Iterations (modes)
- Compression functions
- Constructions
- SHA-3
- Conclusions
(2)

Brute force (2nd preimage

- multiple target second preimage (1 out of many):
- if one can attack 2^{t} simultaneous targets, the effort to find a single preimage is 2^{n-t}
- multiple target second preimage (many out of many):
- time-memory trade-off with $\Theta\left(2^{n}\right)$ precomputation and storage $\Theta\left(2^{2 n / 3}\right)$ time per ($\left.2^{\text {nd }}\right)$ preimage: $\Theta\left(2^{2 n / 3}\right)$ [Hellman'80]
- answer: randomize hash function with a parameter S (salt, key, spice,...)

会)

Indifferentiability from a random oracle or PRO property [Maurer+04]

variant of indistinguishability appropriate when distinguisher has access to inner component (e.g. building block of a hash function)
\exists Simulator S, \forall distinguisher $D, \operatorname{Adv}^{P R O}(H, S)$ is small

Brute force attacks in practice

- $\left(2^{\text {nd }}\right)$ preimage search
$-n=128: 14 B \$$ for 1 year if one can attack 2^{40} targets in parallel
- parallel collision search: small memory using cycle finding algorithms (distinguished points)
- $\mathrm{n}=128: 1 \mathrm{M} \$$ for 5 hours (or 1 year on 60K PCs)
- $\mathrm{n}=160$: $56 \mathrm{M} \$$ for 1 year
- need 256-bit result for long term security (30 years or more)

Quantum computers

- in principle exponential parallelism
- inverting a one-way function: 2^{n} reduced to $2^{n / 2}$ [Grover'96]
- collision search: can we do better than $2^{\mathrm{n} / 2}$?
$-2^{n / 3}$ computation + hardware [Brassard-Hoyer-Tapp'98] = $2^{2 n / 3}$
- [Bernstein'09] classical collision search requires $2^{n / 4}$ computation and hardware (= standard cost of $2^{n / 2}$)

How not to construct a hash function

- Divide the message into t blocks x_{i} of n bits each

Security relation between f and h

- iterating f can degrade its security
- trivial example: $2^{\text {nd }}$ preimage

Security relation between fand h(2)

- solution: Merkle-Damgård (MD) strengthening - fix IV, use unambiguous padding and insert length at the end
- f is collision resistant $\Rightarrow \mathrm{h}$ is collision resistant [Merkle'89-Damgård'89]
- fis ideally $2^{\text {nd }}$ preimage resistant $\stackrel{?}{\Leftrightarrow} \mathrm{~h}$ is ideally $2^{\text {nd }}$ preimage resistant [Lai-Massey'92]
- PRO preservation \Rightarrow Col, Sec and Pre for ideal compression function
- but for narrow pipe bounds for Sec and Pre are at most $2^{n / 2}$ rather than 2^{n}
- many other results
(a)

Attacks on MD-type iterations

- long message $2^{\text {nd }}$ preimage attack
[Dean-Felten-Hu'99], [Kelsey-Schneier'05]
- Sec security degrades lineary with number $2^{\text {t }}$ of message blocks hashed: $2^{n-t+1}+t 2^{n / 2+1}$
- appending the length does not help here!
- multi-collision attack and impact on concatenation [Joux'04]
- herding attack [Kelsey-Kohno'06]
- reduces security of commitment using a hash function from $2^{\text {n }}$
- on-line $2^{\text {nt }}+$ precomputation $2.2^{(n+1) / 2}+$ storage 2^{t}
(曷)

Multiple collisions \neq multi-collision

Assume "ideal" hash function h with n -bit result

- $\Theta\left(2^{n / 2}\right)$ evaluations of h (or steps): 1 collision $-\mathrm{h}(\mathrm{x})=\mathrm{h}\left(\mathrm{x}^{\prime}\right)$
- $\Theta\left(r .2^{n / 2}\right)$ steps: r^{2} collisions
$-\mathrm{h}\left(\mathrm{x}_{1}\right)=\mathrm{h}\left(\mathrm{x}_{1}{ }^{\prime}\right) ; \mathrm{h}\left(\mathrm{x}_{2}\right)=\mathrm{h}\left(\mathrm{x}_{2}{ }^{\prime}\right) ; \ldots ; \mathrm{h}\left(\mathrm{x}_{\mathrm{r}}{ }^{2}\right)=\mathrm{h}\left(\mathrm{x}_{\mathrm{r}^{2}}{ }^{\prime}\right)$
- $\Theta\left(2^{2 n / 3}\right)$ steps: a 3-collision
$-h(x)=h\left(x^{\prime}\right)=h\left(x^{\prime \prime}\right)$
- $\Theta\left(2^{n(t-1) / t}\right)$ steps: a t-fold collision (multi-collision)
$-h\left(x_{1}\right)=h\left(x_{2}\right)=\ldots=h\left(x_{t}\right)$
(1)
length extension: if one knows $h(x)$, easy to compute $h(x|\mid y)$ without knowing x or IV

How (NOT) to strengthen a hash function?
 [Coppersmith'85][Joux'04]

- answer: concatenation
- h_{1} (n 1 -bit result) and h_{2} (n2-bit result)
- intuition: the strength of g against collision $/\left(2^{\text {nd }}\right)$ preimage attacks is the product of the strength of h_{1} and h_{2}
- if both are "independent"

- but....
(3)

Multi-collisions on iterated hash function (2)

- for IV: collision for block 1: $x_{1}, x^{\prime}{ }_{1}$
- for H_{1} : collision for block 2: $\mathrm{x}_{2}, \mathrm{x}_{2}^{\prime}$
- for H_{2} : collision for block 3: $\mathrm{x}_{3}, \mathrm{x}_{3}^{\prime}$
- for H_{3} : collision for block 4: $\mathrm{x}_{4}, \mathrm{x}_{4}^{\prime}$
- now $h\left(x_{1}\left\|x_{2}\right\| x_{3} \| x_{4}\right)=h\left(x_{1}^{\prime}\left\|x_{2}\right\| x_{3} \| x_{4}\right)=h\left(x_{1}^{\prime}\left\|x^{\prime}{ }_{2}\right\| x_{3} \| x_{4}\right)=$ $=h\left(x_{1}^{\prime}\left\|x^{\prime}\right\| x_{3}^{\prime} \| x_{4}^{\prime}\right)$ a 16-fold collision (time: 4 collisions)
(2)

Multi-collisions [coppersmith ${ }^{3} 5\left[\right.$ I Joux ${ }^{\circ} \mathbf{0 4]}$

consider h_{1} ($n 1$-bit result) and h_{2} ($n 2$-bit result), with $n 1 \geq n 2$.
concatenation of 2 iterated hash functions $\left(g(x)=h_{1}(x) \| h_{2}(x)\right)$ is as most as strong as the strongest of the two (even if both are independent)

- cost of collision attack against g at most

$$
n 1 \cdot 2^{n 2 / 2}+2^{n 1 / 2} \ll 2^{(n 1+n 2) / 2}
$$

- cost of (2nd) preimage attack against g at most

$$
n 1 \cdot 2^{n 2 / 2}+2^{n 1}+2^{n 2} \ll 2^{n 1+n 2}
$$

- if either of the functions is weak, the attacks may work better
(2)

Improving MD iteration

- degradation with use: salting (family of functions, randomization)
- or should a salt be part of the input?
- PRO: strong output transformation g
- also solves length extension
- long message $2^{\text {nd }}$ preimage: preclude fix points - counter $\mathrm{f} \rightarrow \mathrm{f}_{\mathrm{i}}$ [Biham-Dunkelman'07]
- multi-collisions, herding: avoid breakdown at $2^{n / 2}$ with larger internal memory: known as wide pipe - e.g., extended MD4, RIPEMD, [Lucks'05]

if result has n bits, H 1 has r bits (rate), H 2 has c bits (capacity) and the permutation π is "ideal" collisions $\quad \min \left(2^{\mathrm{cl} / 2}, 2^{\mathrm{n} / 2}\right)$

Modes: summary

- growing theory to reduce security properties of hash function to that of compression function (MD) or permutation (sponge)
- preservation of large range of properties
- relation between properties
- it is very nice to assume multiple properties of the compression function f , but unfortunately it is very hard to verify these
- still no single comprehensive theory

Block cipher $\left(\mathrm{E}_{\mathrm{k}}\right)$ based: single block length

- output length = block length m; rate $1 ; 1$ key schedule per encryption
- 12 secure compression functions (in ideal cipher model)
- lower bounds: collision $2^{m / 2}$, (2nd) preimage 2^{m}

Iteration modes and compression functions

- security of simple modes well understood
- powerful tools available
- analysis of slightly more complex schemes very difficult
- MD versus sponge debate:
- sponge is simpler
- should x_{i} and H_{i-1} be treated differently?
(1)

Hash function constructions

SHA-2 [FIPS180,NIST‘02]

- SHA-224, SHA-256, SHA-384, SHA-512
- non-linear message expansion
- 64/80 steps

SHA-384 and SHA-512: 64-bit architectures

- SHA-256 collisions: 31/64 steps $2^{65.5}$ [Mendel+'13]
- free start collision: 52/64 steps ($2^{12 x}$) [Li+12]
non-randomness 47/64 steps (practical) [Biryukov+11][Mendel+11]
- SHA-256 preimages: $45 / 64$ steps $\left(2^{25 x}\right)$ [Khovratovitch'12]
- implementations today faster than anticipated
- adoption accelerated by other attacks on TLS

Upgrades

- RIPEMD-160 is good replacement for SHA-1
- upgrading algorithms is always hard
- TLS uses MD5 || SHA-1 to protect algorithm negotiation (up to v1.1)
- upgrading negotiation algorithm is even harder: need to upgrade TLS 1.1 to TLS 1.2

Reductions: 256 -bit result					
	pre	sec	coll.	indiff.	assumption
	Blake-256 256 256 128 128 E ideal Grøstl-256 256 $256-L$ 128 128 π, ρ ideal JH-256 256 256 128 256 π ideal Keccak-256 256 256 128 256 Sideal Skein-256 256 256 128 256 E ideal SHAKE-128 128 128 128 128 IIST 256 $256-L$ 128 -				

Keccak: FIPS 202 (draft: 28 May 2014)

- append 2 extra bits for domain separation to allow
- flexible output length (XOFs or eXtendable Output Functions)
- tree structure (Sakura) allowed by additional encoding
- 6 versions
- SHA3-224: $\mathrm{n}=224 ; \mathrm{c}=448 ; \mathrm{r}=1152$ (72\%)
- SHA3-256: $\mathrm{n}=256 ; \mathrm{c}=512 ; \mathrm{r}=1088$ (68\%)
- SHA3-384: $n=384 ; c=768 ; r=832$ (52\%)
- SHA3-512: $n=512 ; c=1024 ; r=576$ (36\%)
- SHA3-512: $n=512 ; c=1024 ; r=576$ (36\%)
- SHAKE128: $n=x ; \quad c=256 ; r=1344$ (84%)
$\begin{array}{lll}\text { SHAKE128: } n=x ; \quad c=256 ; r=1344 & (84 \%) \\ \text { SHAKE256: } n=x ; \quad c=512 ; \quad r=1088 & (68 \%)\end{array}$
if result has n bits, H 1 has r bits (rate), H 2 has c bits (capacity) and the permutation π is "ideal" collisions $\min \left(2^{\mathrm{c} / 2}, 2^{\mathrm{n} / 2}\right)$ $2^{\text {nd }}$ preimage $\min \left(2^{\mathrm{c} / 2}, 2^{n}\right)$ preimage $\quad \min \left(2^{c}, 2^{n}\right)$
(3)
\qquad

- SHA-1 would have needed 128-160 steps instead of 80
- 2004-2009 attacks: cryptographic meltdown but not dramatic for most applications
- theory is developing for more robust iteration modes and extra features; still early for building blocks
- Nirwana: efficient hash functions with security reduction

